Create a new graph in your tenant with optional labels, tags, data, and vector embeddings.
Overview
The Create Graph endpoint allows you to create a new graph within your tenant. A graph serves as a container for nodes, edges, and their associated data, providing the foundation for your knowledge graph structure.
To create a graph, make a PUT
request to /v1.0/tenants/{tenant-guid}/graphs
with the graph configuration in the request body.
Request Parameters
When creating a graph, you can specify the following optional parameters:
- Name: A descriptive name for your graph
- Labels: An array of string labels to categorize and organize your graph
- Tags: Key-value pairs for additional metadata and organization
- Data: Custom data object to store application-specific information
- Vectors: Array of vector embeddings with model information and dimensionality
curl --location --request PUT 'http://localhost:8701/v1.0/tenants/00000000-0000-0000-0000-000000000000/graphs' \
--header 'content-type: application/json' \
--header 'Authorization: ••••••' \
--data '{
"Name": "My graph",
"Labels": [
"test"
],
"Tags": {
"Foo": "Bar"
},
"Data": {
"Key": "Value"
},
"Vectors": [
{
"Model": "all-MiniLM-L6-v2",
"Dimensionality": 384,
"Content": "test",
"Vectors": [ 0.1, 0.2, 0.3 ]
}
]
}'
import { LiteGraphSdk } from "litegraphdb";
var api = new LiteGraphSdk(
"http://localhost:8701/",
"<Tenant-Guid>",
"*******"
);
const createGraph = async () => {
// Graph object to create
try {
const createdGraph = await api.Graph.create({ Name: "New Graph" });
console.log(createdGraph, "Graph created successfully");
} catch (err) {
console.log("err: ", err);
console.log("Error creating graph:", JSON.stringify(err));
}
};
import litegraph
sdk = litegraph.configure(
endpoint="http://localhost:8701",
tenant_guid="Tenant-Guid",
access_key="******",
)
def create_graph():
graph = litegraph.Graph.create(name="New Graph")
print(graph)
create_graph()
Response
{
"TenantGUID": "00000000-0000-0000-0000-000000000000",
"GUID": "d913a38a-20fc-4009-a0ec-56229f021885",
"Name": "My graph",
"VectorIndexType": "None",
"VectorIndexM": 16,
"VectorIndexEf": 50,
"VectorIndexEfConstruction": 200,
"CreatedUtc": "2025-09-04T08:26:45.592040Z",
"LastUpdateUtc": "2025-09-04T08:26:45.592040Z",
"Labels": [
"test"
],
"Tags": {
"Foo": "Bar"
},
"Data": {
"Key": "Value"
},
"Vectors": [
{
"GUID": "374ec6a9-91d7-412b-9e3f-f1fabac22aab",
"TenantGUID": "00000000-0000-0000-0000-000000000000",
"GraphGUID": "d913a38a-20fc-4009-a0ec-56229f021885",
"Model": "all-MiniLM-L6-v2",
"Dimensionality": 384,
"Content": "test",
"Vectors": [
0.1,
0.2,
0.3
],
"CreatedUtc": "2025-09-04T08:26:45.600435Z",
"LastUpdateUtc": "2025-09-04T08:26:45.600435Z"
}
]
}
Next Steps
After successfully creating a graph, you can:
- Add nodes to populate your graph with entities
- Create edges to establish relationships between nodes
- Perform vector searches for similarity-based queries
- Configure vector indexing for improved search performance